

QUICK GUIDE TO SEPSIS MANAGEMENT

Ministry of Health

1st Edition 2025

QUICK GUIDE TO SEPSIS MANAGEMENT

Ministry of Health

1st Edition 2025

FORWARD

I am pleased to present this first edition of *Quick Guide to Sepsis Management* 2025 which aims to provide a ready reference for early recognition and management of patients with sepsis and septic shock across the health facilities in the country.

Sepsis is a critical global health concern that affects millions of people each year, often with devastating consequences. Sepsis is responsible for 1 in 5 deaths worldwide. A 2020 report by the Institute for Health Metrics and Evaluation revealed that sepsis affects 49 million people globally each year, claiming 11 million lives particularly in low- and middle-income countries. In the United Kingdom alone, there are at least 200,000 cases of sepsis in adults each year, with estimates suggesting as many as 918,000 cases, leading to approximately 48,000 deaths. Sepsis claims more lives than breast, bowel, and prostate cancers combined.

In recognition of its global burden, the World Health Assembly in 2017 passed a pivotal resolution urging all countries to strengthen efforts in prevention, early recognition, and effective management of sepsis. All 194 United Nations member states were urged to develop national action plans to combat it. This call to action has inspired nations, including ours, to develop comprehensive strategies and clinical protocols to reduce sepsis-related deaths and improve outcomes for patients. and all 194 United Nations member states were urged to develop national action plans to combat it.

In Bhutan there has been no dedicated guidelines on sepsis management and patients often present late with multi-organ dysfunction resulting in poor outcomes. This new guideline represents an important milestone in our national commitment to improving patient care and strengthening our health system's response to sepsis. It provides evidence-based recommendations for healthcare professionals across all levels—from primary health facilities to tertiary hospitals—enabling timely diagnosis, prompt treatment, and coordinated implement life-saving interventions.

I commend the dedicated clinicians, public health experts, and partners who contributed to the development of this guide. Their efforts reflect our shared vision of a healthier, safer future for our population. Let us all work together to implement this guide effectively and ensure that no life is lost unnecessarily to sepsis. Together, we can make a difference.

(Pemba Wangchuk)

ru-n.

Secretary

ACKNOWLEDGEMENT

The successful publication of 1st edition of *Quick guide to sepsis* management would not have been possible without the collective efforts and unwavering support of numerous individuals and organizations.

The sepsis working team extends its heartfelt gratitude to all the health professionals who contributed their expertise, time, and insights during the development process. Your dedication to managing sepsis effectively at all levels of healthcare setting is commendable and instrumental in strengthening healthcare delivery across the country.

- 1. Dr. Kesang Namgyel, Intensivist, JDWNRH
- 2. Dr. Sonam Zangmo, Infectious Disease Physician, JDWNRH
- 3. Dr. Sonam Yangzom, Medical Specialist, ERRH
- 4. Dr. Sonam Kelzang, General Surgeon, JDWNRH
- 5. Dr. Kinley Zangmo, Team lead, Intensivist, JDWNRH
- 6. Dr. Sweta Giri, Emergency Physician, JDWNRH
- 7. Dr. Namgay Dorji, General Surgeon, JDWNRH
- 8. Tshering Cheki, Offgt. CPO, QAD, JDWNRH
- 9. Kinley Wangchuk, Sr. Laboratory Officer, Hematology unit, JDWNRH
- 10. Khando Wangchuk, Sr. Pharmacist, JDWNRH
- 11. Kinley Yangdon, Chief Nurse, AICU, JDWNRH
- 12. Sangay Dorji, Staff Nurse, Emergency Department, JDWNRH
- 13. Chandra Bdr Limbu, Staff Nurse, IPC Unit, JDWNRH

We would like to acknowledge the financial support provided by the Fleming Fund, Project Management Unit, Ministry of Health.

ABBREVIATIONS

AMR Antimicrobial Resistance

AKI Acute Kidney Injury

BC Blood Culture
BP Blood Pressure
CI Cardiac Index
CO Cardiac output

CPRT Capillary Refill Time

CRRT Continuous Renal Replacement Therapy

CRP C-reactive Protein

CBC Complete Blood Count
CHF Congestive Heart Failure
CVP Central Venous Pressure
CT Computerized Tomography

DIC Disseminated Intravascular Coagulation

ESBL Extended Spectrum Beta-lactamase

ESRD End Stage Renal Disease FiO2 Fraction of inspired Oxygen

GCS Glasgow Coma Scale

GS Gram Stain IV Intravenous

IPD In- Patient Department
IVC Inferior Vena Cava
IVF Intravenous fluids

LMICs Lower-Middle Income Countries

MAP Mean Arterial Pressure

MCG Microgram

MDRO Multi Drug Resistant Organism
MRI Magnetic Resonance Image

MRSA Methicillin Resistant Staphylococcus Aureus

MU Million unit

NEWS National Early Warning Score

NS Normal Saline

NICE National Institute for Health and Care Excellence

NSTI Necrotizing Soft Tissue infection

NSS Normal Saline Solution
NIV Non-invasive ventilation
OPD Out-Patient Department

OR Operation Room

PBW Predicated Body Weight

PEEP Positive End Expiratory Pressure

PLR Passive Leg Raise

PLRT Passive Leg Raise Test

PO Per Oral

Pplat Plateau Pressure PP Pulse Pressure

PPV Pulse pressure variation

PCT Pro-calcitonin

PBS Peripheral Blood Smear PHC Primary Healthcare Centre

qSOFA quick Sequential Organ Failure Assessment

RBC Red Blood Cell
RL Ringer Lactate

SIRS Systemic Inflammatory Response Syndrome

SOFA Sequential Organ Failure Assessment

SVV Stroke Volume Variation

TAT Turn Around Time

UFH Unfractionated Heparin

UOP Urine Output VA Veno Arterial

WHO World Health Organization

WBC White Blood Cell

CONTENTS

Forwa	'd	i
Ackno	wledgement	iii
Abbrev	viations	iv
Chante	er 1: Introduction	1
1.1	Definitions	3
1.2	Pathophysiology of sepsis	4
1.3	References	4
Chapte	er 2: Screening and identifications of sepsis	7
Chapte	er 3: Resuscitation strategies for sepsis	10
3.1	Measuring lactate	11
3.2	Obtaining cultures before administering antibiotics	11
3.3	Administer broad spectrum antibiotics	11
3.4	Fluid administration	12
3.5	Vasopressor administration	14
3.6	References	15
Chapte	er 4: Recommended initial empiric antibiotic therapy for patients with sepsis and septic shock	18
4.1	Indication for broad spectrum antibiotics in sepsis	18
4.2	Empirical antimicrobial choices for different infections	19
4.3	Antibiotic dosage	23
4.4	Dosing administration as per renal function (creatinine clearance)	24
45	Peferences	25

Chapter	5: Fluid management in sepsis	26		
5.1	Why fluids first in sepsis?	26		
5.2	How much to give?	26		
5.3	What fluid to give?	28		
5.4	Fluid responsiveness	28		
	5.5.1 Heart lung interaction	30		
	5.5.2 Fluid redistribution	32		
5.6	References	33		
Chapter	6: Roles of nurses in sepsis management	36		
6.1	Screening and early recognition	36		
	6.1.1 How to use the news assessment tool?	36		
	6.1.2 How to respond to news?	37		
6.2	Rapid initial resuscitation and implementation of the 1-hour bundle	37		
6.3	Hemodynamic support and monitoring	38		
6.4	Nursing considerations for patient on antimicrobial therapy	40		
6.5	Infection control and prevention	40		
6.6	Multidisciplinary collaboration and communication	41		
6.7	Post sepsis care and rehabilitation	41		
6.8	References	41		
Chapter	7: Laboratory role in early detection of sepsis	45		
7.1	Introduction	45		
7.2	Laboratory tests for early detection of sepsis:	45		
7.3	Final laboratory action	48		
7.4	Summary	48		
7.5	References			

Cha	pter	8: Source control in sepsis and septic shock	51
	8.1	What is source control?	51
	8.2	What are the objectives of source control in sepsis and septic shock?	51
	8.3	What are the methods for source control?	51
	8.4	What is the optimal timing for source control?	53
	8.5	What are the best practices on abdominal drains, sampling and antibiotics after source control?	55
	8.6	References	56
Cha	apter :	9: Refractory septic shock	59
	9.1	Definition	59
	9.2	Adjunctive in management of refractory septic shock	59
	9.3	References	63
Anr	nexur	e	65
	Anne	xure 1: guide to infusion rate of noradrenaline as per body weight	65
	Anne	xure 2: vasopressor extravasation management	67
	Anne	xure 3: template for using sbar for communication	68
	Anne	xure 4: flowchart for managing suspected sepsis patients at primary health centers	69
	Anne	xure 5: flowchart for managing suspected sepsis patients at district hospitals	70
	Anne	xure 6: flowchart for managing suspected sepsis patients at regional referral hospitals	71
	Anne	xure 7: standard operating procedure (sop) on blood culture sample collection	72

Did You know?

While sepsis can affect any individual worldwide, significant regional disparities in incidence and mortality exist with the highest rates in lower-middle-income countries (LMICs)

CHAPTER 1 INTRODUCTION

The intent of the Quick guide to sepsis management is to provide a ready reference for early recognition and management of patients with sepsis and septic shock. This guide book is not to address all aspects and need of sepsis management but it is written to provide a quick reference in which to assist the healthcare professionals taking care of patients with sepsis during the early phase of resuscitation.

Sepsis and septic shock are medical emergencies with a morbidity and mortality rate high as 40% despite all advancements in medicine, especially in low and middle-income countries like ours [1-6]. In Bhutan, patients often present late with multi-organ dysfunction resulting in poor outcomes. Delay in sepsis recognition and initiation of treatment have been associated with worse outcomes, while early evidence-based treatment has been shown to improve survival.

The challenges that are associated with poor outcomes are sepsis being poorly recognized when compared to other medical conditions such as acute coronary syndromes and stroke. In addition, lack of screening tools for early detection and inadequate sepsis resuscitation knowledge in the acute phase are other identified challenges in our setting.

International guidelines, such as the Surviving Sepsis Campaign, and recent literature emphasizes the need for institutional protocols or guidelines tailored to local contexts for the management of sepsis [1-3,7]. In light of this, our team developed this quick guide to sepsis management, which is both feasible and practical within our healthcare setting. This document will complement the sepsis flowcharts already established for various levels of healthcare

facilities in Bhutan, offering a detailed reference for effective management. As the first national document on sepsis management, it will serve as a benchmark for future updates and guidelines in the country. Additionally, this initiative will bring together health care professionals of all backgrounds with a common goal to reduce sepsis-related morbidity and mortality through increased awareness and education.

The objectives of this Adult Sepsis Guideline are as follows;

- Local Protocol Development: The creation of a Bhutanspecific adult sepsis guideline aims to address the gap in managing sepsis within the country's healthcare setting, taking into account the local constraints while aligning with international best practices.
- **2. Public and Professional Awareness:** One of the critical goals is to improve both public and health professional understanding of sepsis, ensuring better recognition, early intervention, and overall outcomes for patients.
- 3. To Support Healthcare Providers in Remote Areas: Provide guidance to young doctors and nurses working in rural or district areas, where basic laboratory facilities for detecting infection may be unavailable. The guideline will help them identify sepsis early, make timely consultations, and refer patients to higher healthcare facilities for further management.
- **4. To Reduce Sepsis Mortality:** Facilitate early recognition and resuscitation of sepsis patients, ultimately reducing the mortality rates associated with sepsis and septic shock.
- 5. To Educate and Update Healthcare Professionals: Ensure that all healthcare professionals are informed and updated on the latest evidence-based practices for the management of sepsis.

- 6. To Advocate for Sepsis Management in Health Policy: Highlight the importance of sepsis sensitization and management to administrators and policymakers, ensuring that sepsis and septic shock are incorporated into national health policies and programs, alongside other major medical conditions.
- 7. Global Sepsis Alliance 2030 Targets: The guideline will also contribute to achieving the ambitious targets set by the Global Sepsis Alliance, focusing on reducing global sepsis incidence, improving survival rates, and enhancing awareness.

1.1 Definitions

Sepsis	Sepsis is characterized by a life-threatening organ dysfunction due to a dysregulated host response to infection [1]
Septic shock	Persistent hypotension requiring vasopressors to maintain MAP ≥65 mm Hg With Serum lactate level >2 mmol/L (18 mg/dL) despite adequate volume resuscitation [1]

Although elevated lactate is a criterion for septic shock, its presence in the definition of septic shock was debated. Some experts argued that combining hyperlactatemia with fluid resistant hypotension better identifies high-risk patients, others viewed lactate as a marker of cellular stress rather than shock [1]. Concerns were also raised about its limited availability in resource-poor settings, potentially hindering diagnosis [8]. As a result, the 2021 Surviving Sepsis Guidelines issued a weak recommendation for lactate as a test for determining the probability of sepsis. Alternative markers of tissue hypoperfusion such as delayed capillary refill time are being explored for settings without lactate measurement. Clinicians in

low-income regions emphasize the need to adapt guidelines to address these shortages [9-11]

1.2 Pathophysiology of sepsis

Sepsis is an inflammatory host response to infection. The sepsis pathophysiology involves an initial hyperinflammatory state with cytokine storm induced by proinflammatory mediators. The cytokine storm produces fever, shock, respiratory failure and multi organ dysfunction. The hyperinflammatory response is followed by an immune paralysis phase, where both the innate and adaptive immune cells undergo apoptosis. Apoptotic depletion of cells occurs in a greater magnitude among sepsis non-survivors than survivors. Due to the suppression of cell-based immunity, mortality associated with the late phase of sepsis is due to acquired secondary and opportunistic infections such as candida. Furthermore, sepsis is characterised by microvascular dysfunction with activation of the endothelium and changes to a proinflammatory phenotype for endothelial cells [3,12]

1.3 References

- Singer M, Deutschman CS, Seymour CW. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
 JAMA [Internet]. 2016 Feb 23;315(8):801–10. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4968574/.
- Dugar S, Choudhary C, Duggal A. Sepsis and septic shock: Guideline-based management. Cleveland Clinic Journal of Medicine [Internet]. 2020;87(1):53–64. Available from: https://www.ccjm.org/content/87/1/53.
- 3. Meyer NJ, P rescott HC. Sepsis and Septic Shock. Hardin CC, editor. New England Journal of Medicine. 2024 Dec 5;391(22):2133–46.
- 4. Jawad I, Lukšić I, Rafnsson SB. Assessing available information

- on the burden of sepsis: global estimates of incidence, prevalence and mortality. Journal of global health [Internet]. 2012;2(1):010404. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484761/
- 5. Dagher GA, Mothana Saadeldine, Bachir R, Zebian D, Ralphe Bou Chebl. Descriptive analysis of sepsis in a developing country. International Journal of Emergency Medicine. 2015 Jun 5;8(1).
- Bauer M, Gerlach H, Vogelmann T, Preissing F, Stiefel J, Adam D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019—results from a systematic review and meta-analysis. Critical Care. 2020 May 19;24(1).
- 7. Thwaites L, Nasa P, Abbenbroek B, Dat VQ, Finfer S, Kwizera A, et al. Management of adult sepsis in resource-limited settings: global expert consensus statements using a Delphi method. Intensive Care Medicine. 2024 Dec 23;51(1),21-38.
- 8. Kraut JA, Madias NE. Lactic Acidosis. Ingelfinger JR, editor. New England Journal of Medicine. 2014 Dec 11;371(24):2309–19.
- Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock. JAMA [Internet]. 2019 Feb 19;321(7):654. Available from: https://jamanetwork.com/journals/jama/article-abstract/2724361
- Ait-Oufella H, Bige N, Boelle PY, Pichereau C, Alves M, Bertinchamp R, et al. Capillary refill time exploration during septic shock. Intensive Care Medicine. 2014 May 9;40(7):958– 64.

- Shrestha GS, Kwizera A, Lundeg G, Baelani JI, Azevedo LCP, Pattnaik R, et al. International Surviving Sepsis Campaign guidelines 2016: the perspective from low-income and middleincome countries. The Lancet Infectious Diseases [Internet]. 2017 Sep [cited 2019 Mar 21];17(9):893–5. Available from: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(17)30453-X/fulltext
- 12. Jacobi J. Pathophysiology of Sepsis. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists [Internet]. 2002;59 Suppl 1(1):S3-8. Available from: https://pubmed.ncbi.nlm. nih.gov/11885412/#:~:text=Sepsis%20results%20when%20 an%20infectious,the%20systemic%20inflammatory%20 response%20syndrome.

CHAPTER 2 SCREENING and IDENTIFICATIONS of SEPSIS

Early identification of sepsis on presentation is important for early treatment initiation and mortality reduction [1]. A patient must be screened for sepsis when infection is suspected.

When to suspect infection?

- History of **one or more** of the following:
 - » Fever
 - » Cough, shortness of bearth
 - » loose stools, vomiting, abdominal pain
 - » Dysuria, reduced urine output
 - » Altered mental status
 - » Rashes, wounds
 - » poor appetite
- · III looking patient

Some patients are at a heightened risk for sepsis. Who are they?

- Older patients (over 75 years)
- People with impaired immune systems:
 - » People on chemotherapy for cancer
 - » Diabetic patients
 - » People with splenectomy
 - » People on long term steroids, immunosuppressant drugs
 - » People with surgery or other invasive procedures in the past 6 weeks
 - » People with any breach of skin integrity (cuts, blisters, skin infections)
 - » People with indwelling lines/catheters
- Women who are pregnant, have given birth or had a termination of pregnancy miscarriage in the past 6 weeks

It is important to understand that the definition of sepsis requires the patient to have 'organ dysfunction'. Although a change in SOFA score is the most reliable indicator of organ dysfunction, calculating it in busy wards and low-resource settings like ours is challenging due to prolonged blood test turnaround times. Thus, we recommend using the NEWS. The NEWS has demonstrated the highest combined sensitivity and specificity for predicting sepsis, septic shock and related mortality, outperforming both SIRS and qSOFA [2,3].

The NEWS takes into consideration 7 parameters, all of which are vital signs and easily obtainable. Based on the score, patients are classified into low, medium or high risk of having sepsis. The NEWS assessment tool as in the following page.

Physiological Parameters	3	2	1	0	1	2	3
Respiration rate (bpm)	≤8		9-11	12- 20		21-24	≥25
Oxygen Saturation	≤91	92- 93	94- 95	≥96			
Supplemental oxygen		Yes		No			
Temp (°C)	≤35		35.1- 36.0	36.1- 38.0	38.1- 39.0	≥39.1	
Systolic BP (mmHg)	≤90	91- 100	101- 110	111- 219			≥220
Heart Rate (bpm)	≤40		41-50	51- 90	91- 110	111- 130	≥131
Level of Consciousness				Α			V, P or U

NEWS	Clinical risk
1 – 4	Low
5 – 6	Medium
≥7	High

Patients with a NEWS >5 have a heightened clinical risk of sepsis and thus, will need immediate intervention / resuscitation.

CHAPTER 3 RESUSCITATION STRATEGIES for SEPSIS

Resuscitation and treatment must begin as soon as you suspect sepsis and septic shock [i.e. NEWS >5]. Sepsis need not be proven when you initiate resuscitation. Treatment modalities to be provided to suspected patients with sepsis and septic shock are delineated in the Sepsis Bundle of Care [4]. The latest Surviving Sepsis Guideline recommends activating the 'Hour – 1 Bundle' [Figure 1]. The elements in the hour – 1 bundle provides a greater benefit when applied together than individually.

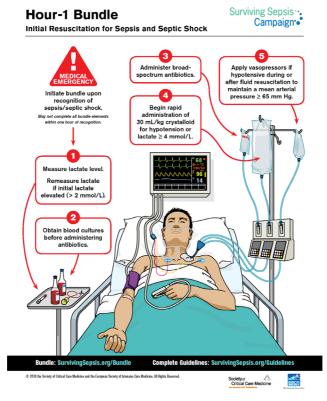


Fig. 1: Hour – 1 Bundle of sepsis and septic shock [4]

3.1 Measuring lactate

The first element in the Hour-1 Bundle is about measuring lactate and if high, to remeasure it. In our context, this might not always be feasible due to unavailability or non-sustained supply of blood gas cartridges. We thus recommend sending out a lactate, whenever possible.

3.2 Obtaining cultures before administering antibiotics

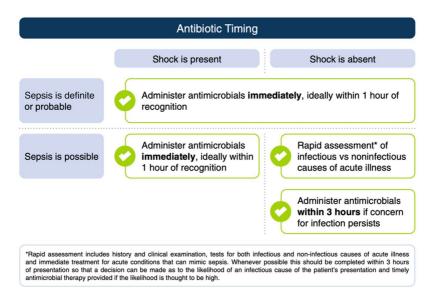
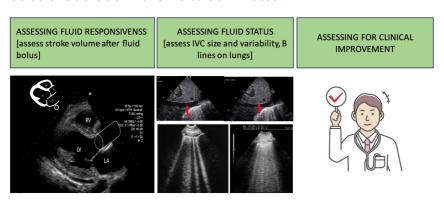
We recommend obtaining blood and other appropriate microbiological cultures (urine, sputum, pus) whenever available, before starting antimicrobial therapy in patients with suspected sepsis and septic shock. This is to be done if it results in no substantial delay in the start of antimicrobials [4].

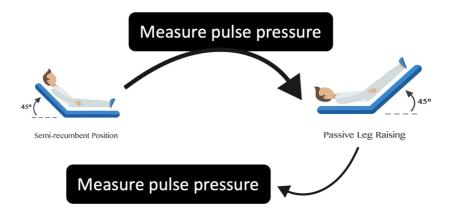
3.3 Administer broad spectrum antibiotics

Early administration of appropriate antibiotics is proven to be the most effective measure to reduce mortality in septic patients and should be considered a time sensitive intervention [5,6]. For every hour of delay in antimicrobial administration, the mortality rises by 7.6% [7]. We recommend administering antimicrobials immediately and within 1 hour, for all patients with septic shock and those with confirmed sepsis. In cases of possible sepsis, up to 3 hours can be used for a rapid assessment of potential etiologies before administering antimicrobials.

Diagnosing sepsis is challenging because sepsis may be mimicked by non-infectious conditions and sepsis itself may present in subtle ways. Thus, there is a need to continuously evaluate the likelihood of infection and the necessity of antimicrobial use [8,9] This approach aligns with the 2021 Surviving Sepsis Guidelines [Figure 2] [4].

The choice of empiric antibiotic depends on the likely source of the infection and postulated organism [10].


Fig 2: Recommendations on antibiotic administration [4]

3.4 Fluid administration

We recommend initiating appropriate fluid resuscitation immediately upon recognition of sepsis or septic shock. The aim is to administer 30ml/kg of IV crystalloids over 3 hours. Start by administering a bolus of 300-500ml over 15 to 30 minutes.

This assessment will guide the need for continued fluid boluses and/ or the need to initiate vasopressors. In settings where ultrasound isn't available, Passive Leg Raise Test (PLRT) is a simple bed side tool which can be used to assess fluid responsiveness. The figure below provides a glance to how the PLRT is performed.

Passive leg raise test (PLRT) is one of the maneuvers to predict fluid responsiveness especially in patients having limitations for heart lung interaction maneuvers. Ideally, the response to PLRT is assessed by the changes in the stroke volume or cardiac output at the end of maneuver but if cardiac output monitoring tool is not available, we can measure the either pulse pressure (PP) or pulse pressure variation (PPV) if there is arterial line.

PLRT is performed by having the patient at a 45° semi recumbent position and measure the pulse pressure (systolic BP – diastolic BP). Then, raise the foot end of the bed and remeasure the pulse pressure. The PLR mimics a fluid challenge by delivering internal volume of around 300ml of venous blood from the lower limbs towards the heart. So, if the pulse pressure increases by 15%, it indicates fluid responsiveness.

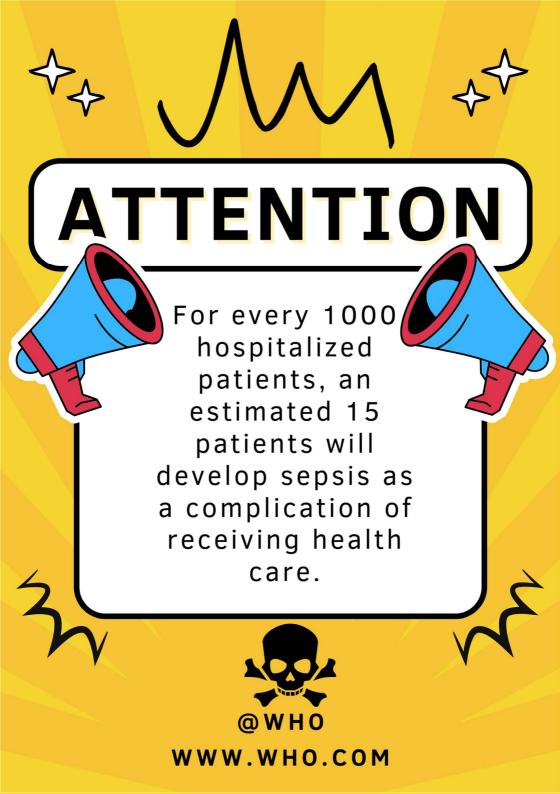
While clinicians tend to hold back intravenous fluid boluses in patients with end stage renal disease and heart failure, there is evidence that shows that holding fluids do more harm [11]. It is also crucial to remember that a recommendation of 30ml/kg does not mean that vasopressors can be initiated only after this amount of fluid has been transfused.

3.5 Vasopressor Administration

When septic shock is refractory to treatment with intravenous fluids (30ml/kg), vasopressors need to be started to achieve a Mean Arterial Pressure (MAP) > 65mmHg.

- No clear stand on the threshold of starting vasopressin
- 1 RCT recommends starting vasopressin when norepinephrine is in the range of 0.25–0.5 µg/ kg/min (12)
- For our low resource setting, we recommend initiating vasopressin when noradrenaline fails to achieve a MAP of 65 mmHg even when infused at a rate of 0.5 mcg/kg/min

INITIALLY, VASOPRESSORS MAY BE INITIATED VIA A WIDE BORE IV CANNULA


Gauge	Colour Code
14G	Orange
16G	Grey
18G	Green
20G	Pink

When vasopressin is not available, epinephrine or dopamine may be used. If cardiac dysfunction with persistent hypoperfusion is present despite adequate volume status and blood pressure, consider adding dobutamine or switching to epinephrine. If a patient is in refractory shock, we recommend performing a blood gas analysis to assess the extent of acidosis.

3.6 References

- 1.Li L, Sunderland N, Rathnayake K. Epidemiology of Sepsis in Australian Public Hospitals: a mixed methods, national longitudinal study (2013-2018). Sydney: Australian Commission on Safety and Quality in Health Care, 2020. 69 p.
- Nieves Ortega R, Rosin C, Bingisser R, Nickel CH. Clinical scores and formal triage for screening of sepsis and adverse outcomes on arrival in an emergency department all-comer cohort. J Emerg Med. 2019; 57(4):453-460.e2.
- Omar A. Usman, Asad A. Usman, Michael A. Ward. Comparison of SIRS, qSOFA, and NEWS for the early identification of sepsis in the Emergency Department. Am J Emerg Med. 2019; 37(8):1490-97. https://doi.org/10.1016/j.ajem.2018.10.058].
- Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47, 1181–1247. https://doi.org/10.1007/s00134-021-06506-y.
- Kalil AC, Johnson DW, Lisco SJ, Sun J. Early goal directed therapy for sepsis: a novel solution for discordant survival outcomes in clinical trials. Crit Care Med. 2017; 45(4):607–14.
- Seymour CW, Gesten F, Prescott HC. Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017; 376(23):2235–44.
- 7. Klein Klouwenberg PM, Cremer OL, van Vught LA, Ong DSY, Frencken JF, Schultz MJ, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015; 19:319.

- 8. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006; 34(6):1589 96.
- Heffner AC, Horton JM, Marchick MR, Jones AE. Etiology of illness in patients with severe sepsis admitted to the hospital from the emergency department. Clin Infect Dis. 2010; 50(6):814–820.
- Tamma PD, Heil EL, Justo JA, Mathers AJ, Satlin MJ, Bonomo RA. IDSA 2024 guidance on the treatment of antimicrobial resistant fram-negative infections. Clin Infec Diseases. 2024; ciae403.
- 11. Kuttab HI, Lykins JD, Hughes MD, Wroblewski K, Keast EP, Kukoyi O, et al. Evaluation and predictors of fluid resuscitation in patients with severe sepsis and septic shock. Crit Care Med. 2019; 47(11):1582–1590.
- Gordon AC, Mason AJ, Thirunavukkarasu N et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. 2016; JAMA 316(5):509–18.

CHAPTER 4

RECOMMENDED INITIAL EMPIRIC ANTIBIOTIC THERAPY for PATIENTS with SEPSIS and SEPTIC SHOCK

4.1 Indication for broad spectrum antibiotics in sepsis

- Broad spectrum antibiotics are agents that cover a wide range of gram positive, gram negative and anaerobic organisms.
 Early administration of broad-spectrum antibiotics is crucial in management of sepsis and septic shock, with delays resulting in adverse clinical outcomes.
- The choice of antimicrobial agent primarily depends on the following factors:
 - 1. Suspected site of infection
 - 2. Disease severity
 - 3. Place of acquisition of the pathogen i.e. community and hospital acquired
 - 4. Antibiotic exposure in the past 3 months and previous organisms identified from the patient
- The antibiotics should be administered after the appropriate clinical samples are taken, ideally within 1 hour from the recognition of sepsis but taking samples should not delay the initiation of antibiotics. Antibiotic choice should be de-escalated and narrowed to the most appropriate agent based on the microbiological culture (48 to 72 hours). Antimicrobials should be switched to oral agents with an improvement in the clinical outcomes and starts tolerating oral feeds.
- Hospital acquired pathogens are more resistant to a wide range of antimicrobials and requires a broader spectrum of antibiotics.
 Patients in septic shock also requires a broad-spectrum antibiotic.

CLINICAL PEARLS

What are hospital acquired infections (HAI)?

HAIs are nosocomially acquired infections that are typically absent or might be incubating at admission. These infections are usually acquired after hospitalization and manifest 48 hours after admission to the hospital.

Risk factors for multi drug resistant organisms

- 1. Prior IV antibiotics within 90 days
- 2. 5 or more days of hospitalization prior to onset
- 3. Septic shock
- 4. Known colonization with MDROs
- 5. Known MRSA colonization / recent MRSA infection
- 6. If skin, skin structure and IV access sites have purulence or abscess
- 7. Severe, rapidly progressive necrotizing pneumonia

4.2 Empirical antimicrobial choices for different infections

The following table provides a guide to the empiric antimicrobials that can be used for patients with sepsis based on the site of infection and place of acquisition

Suspected source	Place of acquisition	Choice of antibiotic
Unknown source		Ceftriaxone 2 gm IV stat and 2gm IV q 24 hr OR Piperacillin -Tazobactam 4.5 gm IV stat and 4.5 gm IV q 8 hr OR Meropenem 2 gm IV stat and 1 gm IV q 8 hr If anaphylaxis to penicillin, then consider Ciprofloxacin 400 mg IV q 8 hr

Suspected source	Place of acquisition	Choice of antibiotic
Central nervous system	Community Acquired	Benzylpenicillin 4 MU IV q 4 hr OR Ceftriaxone 2 gm IV q 12 hr If anaphylaxis to penicillin, then consider Ciprofloxacin 400 mg IV q 8 hr If risk factor for listeria monocytogenes, then add Ampicillin 2 gm IV q 4 hr (with Ceftriaxone or Ciprofloxacin)
	Hospital Acquired	Meropenem 2 gm IV q 8 hr If anaphylaxis to penicillin, then consider Ciprofloxacin 400 mg IV q 8 hr If risk factor for listeria monocytogenes, then Ampicillin 2 gm IV q 4 hr
Pneumonia	Community Acquired	Ampicillin 1 gm IV q 6 hr OR Amoxicillin/clavulanate 1.2 gm IV q 8 hr OR Ceftriaxone 2 gm IV q 24 hr PLUS Azithromycin 500 mg IV q 24 hr OR Doxycycline 100 mg PO q 12 hr

Suspected source	Place of acquisition	Choice of antibiotic
	Hospital Acquired	Ceftriaxone 2 gm IV stat and 2 gm IV q 24 hr OR Piperacillin -Tazobactam 4.5 gm IV stat and 4.5 gm IV q 8 hr OR Meropenem 2 gm IV stat and 1gm IV q 8 hr ± Gentamicin 5-7 mg /kg IV q 24 hr OR Amikacin 15 mg/kg IV q 24 hr
Skin, soft tissue, bones and joints	Community Acquired	Cloxacillin 2 gm IV q 6 hr OR Cefazolin 2 gm IV q 8 hr OR Amoxicillin/clavulanate 1.2 gm IV q 8 hr OR If risk factor for MRSA, then consider: Vancomycin 25-30 mg/kg loading dose (over 2 hours) then 15 mg/kg q 12 hr
	Hospital Acquired	Piperacillin -Tazobactam 4.5 gm IV stat and 4.5 gm IV q 8 hr OR Meropenem 2 gm IV stat and 1 gm IV q 8 hr

Suspected source	Place of acquisition	Choice of antibiotic
	Necrotising fasciitis (NSTI), synergistic gangrene including Fournier's gangrene	Piperacillin - Tazobactam 4.5 gm IV stat and 4.5 gm IV q 8 hr OR Meropenem 2 gm IV stat and 1 gm IV q 8 hr PLUS Vancomycin 25-30 mg/kg loading dose(over 2 hours) and then 15mg/kg IV q 8 hr to q 6 hr PLUS Clindamycin 900 mg IV q 8 hr
Abdominal source	Community Acquired	Ampicillin 1 gm IV q 6 hr PLUS Gentamicin 5-7 mg/kg IV q 24 hr PLUS Metronidazole 500 mg IV q 8 hr OR Amoxicillin/clavulanate 1.2 gm IV q 8 hr OR Cefazolin 2 gm IV q 8 hr PLUS Metronidazole 500 mg IV q 8 hr OR Ceftriaxone 2 gm IV q 24 hr / Cefotaxime 2 gm IV q 8 hr PLUS Metronidazole 500 mg IV q 8 hr PLUS Metronidazole 500 mg IV q 8 hr
	Hospital Acquired	Piperacillin -Tazobactam 4.5 gm IV stat and 4.5 gm IV q 8 hr OR Meropenem 2 gm IV stat and 1 gm IV q 8 hr
Urinary source	Community Acquired	Ampicillin 1 gm IV q 6 hr PLUS Gentamicin 5-7 mg/kg q 24 hr OR Ceftriaxone 2 gm IV q 24 hr

Suspected source	Place of acquisition	Choice of antibiotic
	Hospital Acquired	Ciprofloxacin 400 mg IV q 8 hr OR Piperacillin -Tazobactam 4.5 gm IV stat and 4.5 gm IV q 8 hr OR Meropenem 2 gm IV stat and 1 gm IV q 8 hr
Tropical infections		Azithromycin 500 mg IV q 24 hr OR Doxycycline 100 mg PO q 12 hr

4.3 Antibiotic Dosage

Dosing administration as infusion

- 1. Piperacillin Tazobactam 4.5 gm stat dose over 30 mins 4.5 gm IV TID maintenance dose (Extended infusion) over 4 hours
- 2. Meropenem 2 gm stat dose over 30 mins, 1 gm IV TID maintenance dose (Extended infusion) over 3 hours
- 3. Ciprofloxacin 400 mg IV TID (Infusion) over 60 minutes
- 4. Metronidazole 5 ml/min eq. to the infusion of one bag (500 mg/100ml) over 20 to 60 min
- 5. Meropenem 2 gm stat dose over 30 mins, 2 gm IV TID for CNS
- 6. Vancomycin 25-30 mg/kg loading dose (infusion) over 2 hours, 15 mg/kg IV BD maintenance dose (infusion) 1gm over 1 hour

4.4 Dosing administration as per renal function (Creatinine clearance)

SI. no	Antibiotics	Creatinine clearance	Renal Dosing
1	Piperacillin-	>20mL/min	4.5 gm IV q 8 hr
l	Tazobactam	< 20mL/min	2.25 gm IV q 8 hr
	Morononom	≥50 mL/min	1 gm IV q 8 hr
2	Meropenem (Double the	25 to 49 mL/min	1 gm IV q 12 hr
2	dose in CNS	10 to 24 mL/min	500 mg IV q 12 hr
	infection)	<10 mL/min	500 mg IV q 24 hr
	Gentamicin	>60 mL/min	5-7 kg/kg q 24 hr
3	(High dose	40 to 59 mL/min	5-7 kg/kg q 36 hr
3	extended	20 to 39 mL/min	5-7 kg/kg q 48 hr
	interval)	< 20 mL/min	Not recommended
	Amikacin	> 60 mL/min	15-20 mg/kg q 24 hr
4	(High dose	40 – 60 mL/min	15 mg/kg q 36 hr
4	extended	>30 mL/min	15 mg/kg q 48 hr
	interval)	<30 mL/min	Not recommended
		> 50 mL/min	Not needed
5	Ciprofloxacin	30-50 mL/min	400 mg IV q 12 hr to q 8 hr
		<30 mL/min	400 mg IV q 24 hr
		> 50mL/min	2 gm IV q 8 hr
6	Cefazolin	10-50 mL/min	2 gm IV q 12 hr
		<10 mL/min	2 gm IV q 24 hr

SI. no	Antibiotics	Creatinine clearance	Renal Dosing
		> 50mL/min	1-2 gm IV q 6 hr
		(for meningitis)	2 gm IV q 4 hr
7	A : a : 11:	10-50 mL/min	1 gm IV q 8 hr to q 6 hr
'	Ampicillin	(for meningitis)	2 gm IV q 12 hr to q 6 hr
		<10 mL/min	1 gm IV q 12 hr
		(for meningitis)	1 gm IV q 8 hr
8	Vancomycin		Initial dose of 15mg/kg Adjust next dose as per the trough serum vancomycin concentration

^{*}For the first 24 hours give full dose of antibiotics irrespective of renal function in patients with sepsis and septic shock

4.5 References

- 1. National Antibiotic guideline 2018 MOH Bhutan
- 2. Clinical Practice Guideline for Sepsis and Septic Shock in Adults in the Philippines 2020
- 3. Severe sepsis and septic shock antibiotic guide 2018 Ramathibodhi hospital, Thailand
- 4. Stanford healthcare antimicrobial dosing reference guide
- 5. Medscape, point of care medical reference app

CHAPTER 5 FLUID MANAGEMENT in SEPSIS

5.1 Why fluids first in sepsis?

IV fluids are the first and integral part of treatment of sepsis patients with hypotension and septic shock. The goal of initial fluid therapy is to increase depleted or functionally reduced intravascular volume, thereby cardiac output and blood pressure. This will help to maintain both macrovascular perfusion (e.g., stroke volume and cardiac output) and microvascular perfusion (e.g., capillary blood flow) [1].

5.2 How much to give?

Surviving Sepsis Guideline recommend, in the resuscitation for the sepsis-induced hypoperfusion, at least 30ml/kg of IV crystalloids fluid be given within the first 3 hours which is downgraded from strong to weak recommendation [2].

In the early phase of septic shock, where there is evidence of acute circulatory failure with obvious hypovolemia and hypoperfusion, volume expansion should be done with IV fluids as per SSG up to 30ml/kg in the first 3 hours. When the hypovolemia is not obvious but with persistent hypotension, try fluid challenge for fluid responsiveness. The Fluid challenge is not standardized and lacks of consistency among the published studies. The most common form of administration is 500 to 1000 mL of crystalloid over 30 minutes, and this is assessed by an increase in CI or CO $\geq 15\%$ [1-5].

In trial by Aya, H. D.et al they found the minimal fluid volume that is able to increase the backward pressure of venous return is 4 mL/kg over 15 mins and it can reliably detect responders and non-responders [5].

Thus, we recommend the IV fluid resuscitation in septic shock as described in the figure 1.

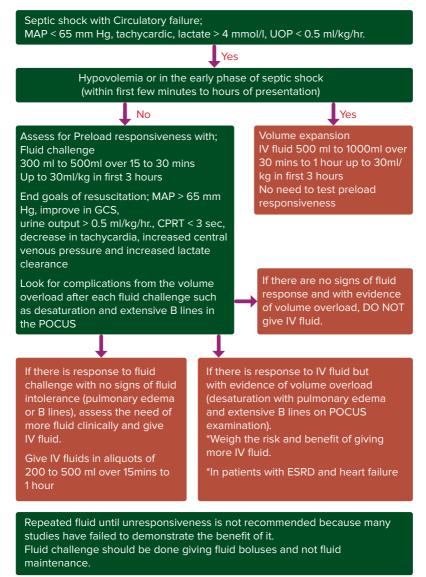


Figure 1; Fluid resuscitation and fluid challenge in septic shock

5.3 What fluid to give?

According to the surviving sepsis guideline, 2021, the recommended first-line fluid for resuscitation in adults with sepsis and septic shock is crystalloids (Balanced crystalloids over normal saline)

Role of Colloids (20% albumin)

For adults with sepsis or septic shock, the surviving sepsis guidelines suggest using albumin in patients who received large volumes of crystalloids however exercise precaution when used in patients with traumatic brain injury, leaky lungs and cardiac issues.

5.4 Fluid responsiveness

This is a process that consists of predicting before fluid administration whether or not subsequent fluid administration will increase cardiac output. It avoids unnecessary fluid administration and contributes to reducing the cumulative fluid balance [6].

Prediction of fluid responsiveness is based on dynamic tests and indices, which observe the effect on cardiac output of changes in cardiac preload. The threshold to define fluid responsiveness depends on the change in cardiac preload induced by the test (e.g. 15% for fluid challenge, 10% for the PLR test, 5% for the end-expiratory occlusion test) [3,6].

Advanced monitoring tools such as cardiac echocardiography and arterial line are required to assess the fluid response.

Prediction of fluid responsiveness is based on dynamic tests and indices, which observe the effect on cardiac output of changes in cardiac preload.

Static Measures	Dynamic Measures
Central venous pressure Pulmonary artery occlusion pressure Inferior vena cava size	 Pulse pressure variation Stroke volume variation Inferior vena cava variation or diameter size Tidal volume challenge test Fluid challenge Mini fluid challenge test Passive Leg Raise Test

Dynamic measures

Heart Lung Interaction	Fluid redistribution
 Pulse pressure variation (PPV). Stroke volume variation (SVV). Respiratory variation of IVC/ SVC. Tidal volume challenge test 	Passive leg rising testMini-fluid challenge testEnd-expiratory occlusion test

5.5.1 Heart lung interaction

Parameters	Pulse pressure variation (PPV) [7-9]	Stroke volume variation (SVV) [7-9]	Inferior vena cava (IVC) variability / IVC diameter [10,11]
Definition	Percentage change in pulse pressure (the difference between systolic and diastolic pressure) during a single respiratory cycle8-9	Represents the variation (as a percentage) of Stroke volume during the ventilation cycle	Reflects respiratory changes in venous return, IVC sizes changes with respiration and it is measured at each end of respiration IVC distensibility index is for the intubated patient
			IVC Collapsibility index is for the spontaneously breathing patient
How to calculate	PPV = [(PP max-PP min)/PP mean] *100	SVV (%) = (SVmax -SVmin)/ SVmean] *100	IVC distensibility index = IVC max-IVCmin *100 IVC min
			IVC collapsibility index = IVC max-IVCmin *100 IVC min
			IVC variability index = IVC max- IVCmin*100 IVC mean

Parameters	Pulse pressure variation (PPV) [7-9]	Stroke volume variation (SVV) [7-9]	Inferior vena cava (IVC) variability / IVC diameter [10,11]
Interpretation	PPV < 9%. not fluid responsive	SVV > 12 % fluid responsive	IVC distensibility index >18% fluid responsiveness
	PPV > 13% fluid responsive		IVC collapsibility index > 40% fluid responsiveness
	PPV 9 - 13 grey zone		IVC variability index >12% fluid responsiveness
			IVC size <1.0 cm fluid responsiveness
			IVC size >2.5 cm fluid unresponsiveness
Limitations	• Tidal volume (Vt)<8 ml/kg, • Right ventricular dysfunction • Arrythmias, • Heart rate/ respiratory rate ratio<3.6 • Impaired respiratory mechanic [9] • Need arterial line	 Tidal volume (Vt)<8 ml/kg, Right ventricular dysfunction Arrythmias, Heart rate/ respiratory rate ratio<3.6 Impaired respiratory mechanic [9] Need arterial line 	 Patients with right ventricular (RV) dysfunction It is PEEP sensitive

5.5.2 Fluid redistribution

Tidal Volume Challenge test

- » Increase Tidal Volume transiently from 6ml/kg Predicted body weight (PBW) to 8ml/kg PBW for 1 minute [3,11]
- » Observe change in PPV/SVV from baseline (Delta PPV/Delta SVV at PEEP 6-8)

PPV 6-8 cut off 3.5% - fluid responsiveness.

SVV 6-8 cut off 2.5% - fluid responsiveness.

Tidal volume challenge test predicted by change in PPV

Passive leg raising test (PLRT)

The response to PLRT is assessed by monitoring the changes in stroke volume (SV), cardiac output (CO), pulse pressure variation (PPV) or pulse pressure [12,13]

PLRT maneuver is performed as described in chapter 2 on screening and identification of sepsis

Positive PLRT test is indicated as in the following table;

Parameters	Positive test (Fluid responsive)
Cardiac output	Increases by 10 %
Stroke volume	Increases by 10 to 15%
Pulse pressure variation	Decreases by 30%
Pulse pressure	Increases by 10 to 15%

Limitations

Brain injury, Immobilization, Raised Intra-abdominal pressure PLRT better predicted by change in cardiac output

Mini fluid challenge test

Administer 50 to 100 ml crystalloid/colloid over 1 min Assess Cardiac Output (CO) increased >10%

Limitations

Initial bolus may not predict fluid response False negative response

Fluid challenge

A fluid challenge is a dynamic test to assess fluid responsiveness by giving a fluid bolus and simultaneously monitoring the hemodynamic effect. The best response is predicted by increase in cardiac output (CO) > 10 to 15 % or mean arterial pressure (MAP) > 10 % [1]

Fluid bolus

A fluid bolus is the rapid infusion of fluids over a short period of time.

In clinical practice, a fluid bolus is usually given to correct hypovolemia, hypotension, inadequate blood flow or impaired microcirculatory perfusion [6]

5.6 References

- The National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Clinical Trials Network. Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension. New England Journal of Medicine. 2023 Jan 21;388(6).
- Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Critical Care Medicine [Internet]. 2021 Nov;49(11). Available from: https://journals.lww.com/ccmjournal/Fulltext/2021/11000/ Surviving_Sepsis_Campaign__International.21.aspx

- 3. Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What's new? Annals of Intensive Care. 2022 May 28;12(1).
- Messina A, Longhini F, Coppo C, Pagni A, Lungu R, Ronco C, et al. Use of the Fluid Challenge in Critically III Adult Patients:
 A Systematic Review. Anesthesia and Analgesia [Internet].
 2017 Nov 1 [cited 2021 Apr 18];125(5):1532–43. Available from: https://pubmed.ncbi.nlm.nih.gov/28514324/
- 5. Aya HD, Rhodes A, Chis Ster I, Fletcher N, Grounds RM, Cecconi M. Hemodynamic Effect of Different Doses of Fluids for a Fluid Challenge. Critical Care Medicine. 2017 Feb;45(2):e161–8.
- Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Annals of Intensive Care. 2018 May 22;8(1).
- 7. Hussein MM, Mostafa RH. Arterial Pulse Pressure Variation versus Central Venous Pressure as a Predictor for Fluid Responsiveness during Open Major Abdominal Operations. Open Journal of Anesthesiology. 2018;08(02):43–53.
- 8. Jozwiak M, Jean-Louis Teboul. Heart—Lungs interactions: the basics and clinical implications. Annals of Intensive Care. 2024 Aug 12;14(1).
- Messina A, Caporale M, Calabrò L, Lionetti G, Bono D, Guia Margherita Matronola, et al. Reliability of pulse pressure and stroke volume variation in assessing fluid responsiveness in the operating room: a metanalysis and a metaregression. Critical Care. 2023 Nov 8;27(1).
- Carneiro R, Silvia C, Neves V, Ary Serpa Neto, Rodrigo Octavio Deliberato, Adriano José Pereira, et al. Assessment of fluid responsiveness using pulse pressure variation, stroke

- volume variation, plethysmographic variability index, central venous pressure, and inferior vena cava variation in patients undergoing mechanical ventilation: a systematic review and meta-analysis. Critical Care. 2024 Aug 31;28(1).
- 11. Elsayed AI, Zaghla HE, Mowafy HE, Fakher MA, Selim KA. Comparison of Changes in PPV Using a Tidal Volume Challenge with a Passive Leg Raising Test to Predict Fluid Responsiveness in Patients Ventilated Using Low Tidal Volume. Indian Journal of Critical Care Medicine. 2021 Jun 1;25(6):685–90.
- Mallat J, Fischer MO, Granier M, Vinsonneau C, Jonard M, Mahjoub Y, et al. Passive leg raising-induced changes in pulse pressure variation to assess fluid responsiveness in mechanically ventilated patients: a multicentre prospective observational study. British Journal of Anaesthesia [Internet]. 2022 Sep 1 [cited 2022 Sep 15];129(3):308–16. Available from: https://www.bjanaesthesia.org/article/S0007-0912(22)00309-9/fulltext#secsectitle0130
- Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Passive leg raising predicts fluid responsiveness in the critically ill*. Critical Care Medicine. 2006 May;34(5):1402

CHAPTER 6 ROLES of NURSES in SEPSIS MANAGEMENT

Nurses are essential in identifying patients with sepsis, administering and assessing response to treatment, supporting the patient and family, and limiting complications from sepsis [1,2]

6.1 Screening and early recognition

Due to constant patient interaction; nurses are uniquely positioned to incorporate sepsis screening into their daily routine work [3] Nurses in all wards and units should use NEWS as a screening tool for sepsis in patients with signs of infection. Furthermore, first contact nurses at all health centers are pivotal in identifying sepsis early by using the NEWS tool.

6.1.1 How to use the NEWS assessment tool?

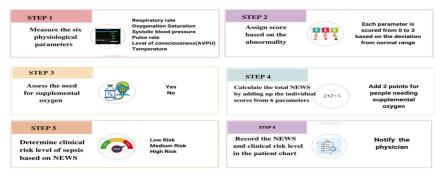


Fig 1: Steps to use the NEWS assessment tool [4]

6.1.2 How to respond to NEWS?

NEWS	Frequency of monitoring	Nurses action
0	Every 12 hour	Continue routine monitoring
0-4	Every 4-6 hours	Continue routine monitoring Inform the doctor on duty
5-6	Every 1 hour	Inform the doctor on duty Consider activating the sepsis pathway
>7	Every 15-30 minutes	Inform physician on duty Activate the sepsis pathway

6.2 Rapid initial Resuscitation and implementation of the 1-hour bundle

Nurse driven implementation of sepsis protocols have shown to be highly effective in early identification and treatment of septic patients within the crucial first hour. [5,6]

Nurses are responsible for the timely initiation of 1-hour bundle as shown in the figure 2:

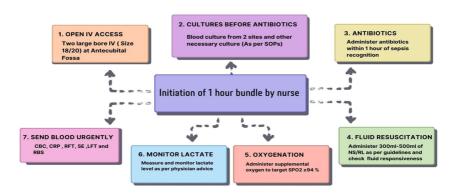


Fig 2: Responsibilities of nurse during the implementation of 1-hour bundle

6.3 Hemodynamic support and monitoring

- Monitor NEWS and communicate the findings with the doctor on duty for further management
- When required, start vasopressors, taking into consideration the following:
 - Prepare noradrenaline infusion, the first line vasopressor, as follows:

Single Strength: Noradrenaline 4mg (4ml) + NS or D5% (46ml) = 50 ml solution

Concentration: 1 ml = 80mcg

Double Strength: Noradrenaline 8mg (8ml) + NS or D5% (42ml) = 50 ml solution

Concentration: 1 ml = 160mcg

Refer to Table in the annexure 1 for a simplified guide to the rate of noradrenaline infusion based on the patient's body weight [7]

- 2. When choosing the site for placement of the peripheral IV line, choose a site which can maximize the effect of the vasopressor while causing minimal physical harm to the patient. The recommended site is the peripheral vein proximal to antecubital fossa [8]. If a central line is in-situ, use the central line for administering the vasopressor.
 - When using a peripheral access for infusing vasopressors, monitor for complications such as extravasation and thrombophlebitis. In case of extravasation
- Immediate steps should be taken to prevent complications, following the flowchart in the annexure 2 on extravasation
 [9]

- 4. Use the single strength formulation (1 ml= 80mcg) of Noradrenaline for infusion via large bore peripheral access.
- 5. Inform the doctor on duty to insert a central line when one of the following conditions are met:
 - 5.1. Noradrenaline dose is > 0.5mcg/kg/min for more than 24 hours [8, 10, 11]
 - 5.2. Two or more vasopressors are required to achieve the target MAP [10]
- 6. Prepare Vasopressin infusion, the second line vasopressors as follows:

Vasopressin 20 units (1ml) + Normal Saline (39 Repeated fluid until unresponsiveness is not recommended because many studies have failed to demonstrate the benefit of it.

- Oxygenation and Perfusion support
 - Continue to monitor SPO2 and administer supplemental oxygen to treat hypoxemia in patients with sepsis via different delivery devices
 - 2. Monitor urine output and inform the doctor if the urine output is <0.5ml/kg/hr [12]
 - 3. Monitor CRT and inform the doctor on duty if the CRT >3 seconds [1,10]

How to measure CRT

Apply firm pressure to the ventral surface of the right index finger distal phalanx with a glass microscope slide.

Increase the pressure until the skin goes blank and then maintain it for 10 seconds. Record the time for return of the normal skin color in second

Interpretation: A refill time greater than 3 seconds is defined as abnormal.

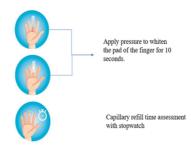


Fig 3: How to measure capillary refill time [10]

6.4 Nursing considerations for patient on antimicrobial therapy

Apart from the timely administration of antibiotics, nurses have the following additional roles:

- Inform the doctor on duty for the need for modification, deescalation and discontinuation of antimicrobial therapy as indicated by findings of clinical assessment
- If the patient is on antibiotics that require prolonged infusion such as beta-lactams, consider the need for a dedicated IV access for antibiotic administration. This IV access must be different from the access used for the infusion of vasopressors [1]

6.5 Infection control and prevention

Nurses' roles in infection control and prevention spans across patient care, policy implementation and education. To achieve these, nurses must:

- Emphasize and educate on importance of hand hygiene
- Follow aseptic techniques for procedures such as IV cannulation or central line insertion
- Encourage early removal of invasive devices when no longer necessary

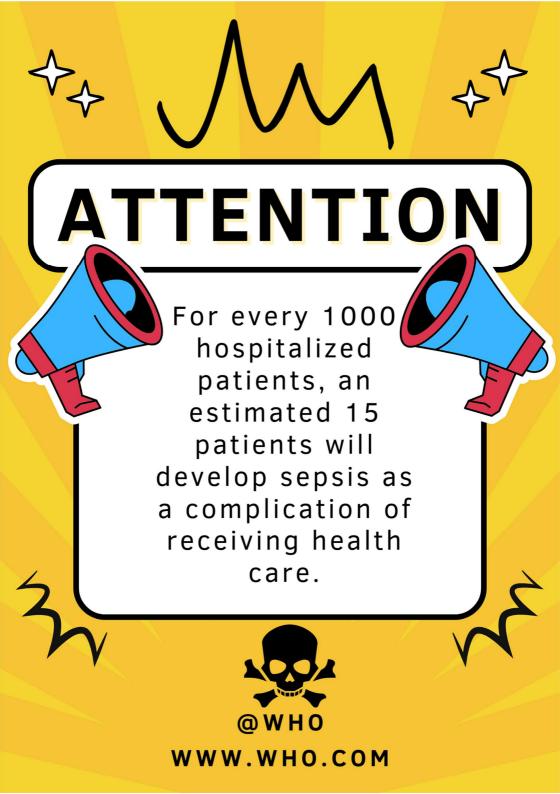
6.6 Multidisciplinary collaboration and communication

Timely interventions in sepsis are dependent on early recognition and effective communication among the health care team. A standard approach in communication is important to report acute events. Nurses have the following roles to ensure effective communication:

- Maintain clear and timely communication with the doctors and other team members
- 2. Use the standard communication tool SBAR to communicate information to the team [13,14]. We recommend using the SBAR template in annexure 3 as a guide to communicate information to the doctor on duty and other team members.

6.7 Post sepsis care and rehabilitation

Nurses play a crucial role in the post sepsis care as sepsis survivors often face long term physical, cognitive and physiological challenges [15-17]. Nurses have the following roles:


- Discuss goals of care (short and long term) and enforce shared decision making
- 2. Educate patient and family about post sepsis syndrome which includes fatigue, reduced muscle strength, anxiety and depression and provide appropriate intervention
- 3. Support and refer sepsis survivors to relevant rehabilitation therapies such as occupational therapy and physiotherapy.

6.8 References

 Schorr CA, Seckel MA, Papathanassoglou E, Kleinpell R. Nursing Implications of the Updated 2021 Surviving Sepsis Campaign Guidelines. American Journal of Critical Care. 2022;31(4):329–36.

- Bleakley G, Cole M. Recognition and management of sepsis: The nurse's role. British Journal of Nursing [Internet]. 2020 Nov 26;29
- Nevill A, Kuhn L, Thompson J, Morphet J. The influence of nurse allocated triage category on the care of patients with sepsis in the emergency department: A retrospective review. Australasian Emergency Care. 2020 Oct;24(2).
- RCP. National Early Warning Score (NEWS) 2 Standardising the assessment of acute-illness severity in the NHS [Internet]. 2017
 Dec. Available from: https://www.rcp.ac.uk/media/a4ibkkbf/ news2-final-report_0_0.pdf
- McCaffery M, Onikoyi O, Rodrigopulle D, Syed A, Jones S, Mansfield L, et al. Sepsis-review of screening for sepsis by nursing, nurse driven sepsis protocols and development of sepsis hospital policy/protocols. Nursing and Palliative Care. 2016;1(2):33–7.
- 6. Semanco M, Wright S, Rich RL. Improving Initial Sepsis Management Through a Nurse-Driven Rapid Response Team Protocol. Critical Care Nurse. 2022 Oct 1;42(5):51–7.
- 7. Critical Care Formulary Development Group. "Noradrenaline (Critical Care Formulary) | Right Decisions." Rightdecisions. scot.nhs.uk, 14 Feb. 2023, rightdecisions.scot.nhs.uk/tamtreatments-and-medicines-nhs-highland/formularies/ancillary-formularies/critical-care-formulary-critical-care-formulary/noradrenaline-critical-care-formulary/.
- Loubani OM, Green RS. A Systematic Review of Extravasation and Local Tissue Injury from Administration of Vasopressors through Peripheral Intravenous Catheters and Central Venous Catheters. Journal of Critical Care. 2015 Jun;30(3):653.e9–17.

- 9. Araiza A, Duran M, Varon J. Administration of vasopressors through peripheral venous catheters. Canadian Medical Association Journal. 2022 May 29;194(21):E739–9.
- Evans L, Rhodes A, Alhazzani W et.al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021 Nov;47(11):1181-1247. doi: 10.1007/s00134-021-06506-y. Epub 2
- 11. Kalinoski M, Kalinoski T, Pendleton K. The use of peripheral vasopressors and its implications for hospital medicine. British Journal of Hospital Medicine. 2024 Jul 24;85(7):1–8.
- The UK Sepsis Trust. The Sepsis Manual [Internet]. United Kingdom Sepsis Trust; 2024. Available from: https://sepsistrust. org/wp-content/uploads/2024/07/Sepsis-Manual-7th-Edition-2024-V1.0.pdf
- Ehirim J. Enhancing Communication Between Nurses And Physicians On Patients With Sepsis [Internet]. IRL @ UMSL. 2021 [cited 2025 Feb 20]. Available from: https://irl.umsl.edu/ dissertation/1068
- Müller M, Jürgens J, Redaèlli M, Klingberg K, Hautz WE, Stock S. Impact of the Communication and Patient hand-off Tool SBAR on Patient safety: a Systematic Review. BMJ Open [Internet]. 2020 Aug 23;8(8):1–10.
- 15. Sagan V. Post-sepsis syndrome: Overview of a relatively new diagnosis. Nursing Times. 2019;115(8):19–21.
- 16. Born S, Matthäus-Krämer C, Bichmann A, Boltz HS, Esch M, Heydt L, et al. Sepsis survivors and care givers perspectives on post–acute rehabilitation and aftercare in the first year after sepsis in Germany. Frontiers in Medicine. 2023 Apr 11;10.
- 17. Prescott HC, Costa DK. Improving Long-Term Outcomes After Sepsis. Critical Care Clinics. 2018 Jan;34(1):175–88.

CHAPTER 7

LABORATORY ROLE in EARLY DETECTION of SEPSIS

7.1 Introduction

The clinical laboratory's ability to provide quick and precise diagnostic data is essential for the early diagnosis of sepsis. By means of blood cultures, biomarkers like procalcitonin (PCT) and C-reactive protein (CRP) aid in the identification of infections, evaluation of inflammation, and prompt treatment guidelines. Due to the rapid progression of sepsis and the need for prompt action, early detection is crucial to improve patient outcomes. Clinical laboratories facilitate evidence-based clinical decision-making, lower mortality rates, and improve sepsis therapy by combining automated testing and real-time monitoring.

7.2 Laboratory tests for early detection of sepsis:

Samples of suspected sepsis patient should be sent immediately after collection and laboratory personnel should be informed for urgent processing.

- Complete Blood Count (CBC) with Differential Detects leukocytosis, leukopenia, indicating infection response. (10-20 minutes TAT)
- **C** reactive protein (CRP) Indicates systemic inflammation and infection severity. (20 30 minutes TAT).
- Pro-calcitonin (PCT) Differentiates bacterial infections from other inflammatory conditions. While PCT levels can help confirm bacterial infection and guide the de-escalation of antibiotics, PCT IS NOT RECOMMENDED TO USE FOR INITIATION OF ANTIBIOTICS. (20 – 30 minutes TAT)
- Peripheral Blood Smear (PBS) Morphological description of blood cells aid in detecting sepsis. (30 -60 minutes TAT). The following provides a guide to features seen in PBS of patient with

suspected sepsis.

WBC	RBC	PLATELETS
WBC or Toxic vacuolation of neutrophils Left shift – Band Neutrophils Band Toxic Neutrophils vacuolation of Neutrophils Neutrophils	Fragmentation (Schistocytes) — indicate (DIC). Anisocytosis & Poikilocytosis — Irregularly shaped or sized RBCs, reflecting systemic stress and organ dysfunction. SCHISTOCYTES (FRAGMENTED RED BLADO CELLS)	Thrombocytopenia

- Gram Stain (GS) Differentiates gram positive and gramnegative bacteria causing sepsis. Once the machine flags
 positive for blood culture, the sample is processed for gram stain
 and sub-cultured simultaneously. Concerned health personnel
 are informed immediately if the bacteria is gram negative. Gram
 positive are mostly found to be contaminants, hence, treating
 physicians or nurses are not alarmed about it. Physicians can
 also request for urgent GS if needed. (24 hours TAT).
- Blood Culture (BC) Identifies causative pathogens to guide antibiotic therapy. Test samples of the patient with suspected sepsis should be collected as soon as possible and send immediately for testing. As for blood cultures, drawing blood from multiple sites increases the chance of detecting the pathogen. If a suspected contaminant grows in only one set but not both, it is more likely to be a false positive and if the same organism grows in both sets, it suggests a true bloodstream infection. (5 to 7 days TAT)

 Urine – Urine microscopy and urine culture plays a crucial role in the early detection of sepsis, especially when the infection originates from the urinary tract or when sepsis affects kidney function. (1 day TAT)

Note: For blood culture sample collection, please refer the SOP attached for detailed information.

Collection and labeling of samples: Pre-analytical errors are one
of the major causes in the delay of laboratory reports. Labeling,
proper mixing of blood in tubes with anticoagulants and adequate
volume should be considered before sending the sample to the
lab in order to prevent delay of reports.

The minimum information required on the sample container are:

	Patient name, age, gender, CID, contact number
2	Location (IPD, OPD, etc.).
	Date and time of sampling.
*	Label two bottles with its site of venipuncture respectively (for the blood culture bottles)

The request form must also contain the same information as well as:

	Relevant clinical findings.
-	Travel history over past 12 months.
	Recent and current anti-microbial therapy.
	Requesting physician or nurse's name and signature.

7.3 Final Laboratory action

After reception of samples, laboratory personnel should start processing immediately and release the reports as soon as possible. For panic values, the treating physician or other concerned health personnel should be alarmed immediately.

7.4 Summary

Early detection of sepsis is found to be very critical for saving lives, and the clinical laboratory serves as a cornerstone in this process. Labs enable prompt diagnosis and therapy by offering crucial insights into infection, inflammation, and organ function through accurate and quick testing. Clinicians can identify sepsis early on with the use of advanced biomarkers, blood cultures, and urine analysis, which improves patient outcomes and lowers complications. The clinical laboratory continues to be a vital ally in the battle against sepsis, guaranteeing prompt and efficient medical intervention due to ongoing developments in diagnostic technologies.

7.5 References

- Blood Culture Contamination: An Overview for Infection Control and Antibiotic Stewardship Programs Working with the Clinical Laboratory. (n.d.). https://www.cdc.gov/antibiotic-use/ core-elements/pdfs/fs-bloodculture-508.pdf?
- CLINICAL PRACTICE GUIDELINES FOR SEPSIS AND SEPTIC SHOCK IN ADULTS IN THE PHILIPPINES 2020 2 Clinical Practice Guideline for Sepsis and Septic Shock in Adults in the Philippines 2020. (2020). https://www.psmid.org/wpcontent/uploads/2020/03/2020-CPG-for-Sepsis-in-Adults-Full-Manuscript.pdf
- 3. The UK Sepsis Trust. (2024). The Sepsis Manual . United Kingdom Sepsis Trust. https://sepsistrust.org/wp-content/uploads/2024/07/Sepsis-Manual-7th-Edition-2024-V1.0.pdf

DID YOU KNOW?

Sepsis is costly; the average hospitalwide cost of sepsis was estimated to be more than US\$ 32,000 per patient in high-income countries.

www.who.com

CHAPTER 8 SOURCE CONTROL in SEPSIS and SEPTIC SHOCK

Source control is a crucial aspect of managing sepsis and septic shock.

8.1 What is source control?

Source control is physical measures to eradicate a focus of infection and eliminate or treat microbial proliferation. It should be undertaken in timely manner wherever feasible since undrained foci of infection may not respond to antibiotics alone.

8.2 What are the objectives of source control in sepsis and septic shock?

Objectives of source control are:

- 1. To eliminate the source of infection, control ongoing contamination, and restore premorbid anatomy and function.
- 2. Reduce systemic inflammatory response and bacterial load.
- 3. Source control is required for effective antimicrobial therapy.

8.3 What are the methods for source control?

- Source control strategies vary depending on the infection type and may include drainage, debridement, or removal of obstructions.
- A multidisciplinary approach is essential when determining the best source control strategy, as different infections require tailored interventions.
- Factors such as patient stability, infection location, and available expertise must be considered.
- In bloodstream infections, source control can be challenging, especially in catheter-related infections, where catheter removal

is often necessary.

- In some cases, less invasive temporizing measures like percutaneous drainage can be used initially, but definitive intervention should not be delayed once the patient stabilizes.
- Poorly controlled infections can lead to persistent sepsis, necessitating a more aggressive approach.

Failed source control can result from incomplete removal of the infection source, ongoing contamination, or inadequate antimicrobial therapy. Diagnosing failure is difficult due to a lack of definitive diagnostic tools, making clinical monitoring and imaging essential. The success of source control depends on balancing intervention risks with potential benefits, ensuring minimal harm while maximizing effectiveness. While source control is commonly associated with abdominal infections, its principles apply broadly, reinforcing the need for individualized, multidisciplinary decision-making.

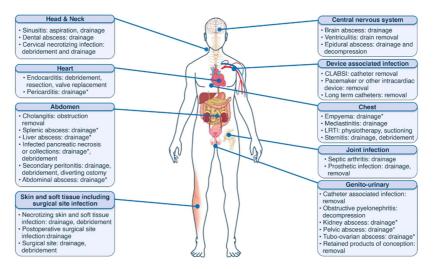


Fig 1: Methods for source control [1]

8.4 What is the optimal timing for source control?

A growing body of evidence supports the importance of early source control. The optimal timing of source control is unknown however the surviving sepsis guidelines, 2021, suggest no more than 6 to 12 hours after diagnosis since survival is negatively impacted by inadequate source control.

From a practical point of view, the urgency of source control is determined by three factors:

- 1. The presence and magnitude of ongoing contamination,
- 2. The degree of organ dysfunction, and
- 3. Patient physiology at presentation.

Based on these characteristics, patients can be classified into three categories according to the degree of urgency for source control.

Levels of Urgency	Patients in category 1	Patients in category 2	Patients in category 3
	Source control is required as soon as possible (i.e., suspicion of sepsis or confirmation of diagnosis). Any delay in source control in these patients is associated with an increased risk of mortality.	Source control is required as soon as their physiology permits intervention. Although these patients may appear stable, there is some time for correction of metabolic disorders; it is important to implement source control interventions as soon as possible.	Source control is required once the process of infection has been demarcated.
Examples	Examples include necrotizing skin and soft tissue infections, intra-abdominal infections (particularly in cases characterized by rapid deterioration of organ dysfunction), or abdominal compartment syndrome. In these patients, fluid resuscitation should be promptly performed and continued during the source control procedure.	Examples include patients with secondary peritonitis, pleural empyema, and acute cholecystitis. Most patients are classified into this category.	A typical example is infected pancreatic necrosis in clinically stable patients. Delaying a percutaneous intervention or surgical procedure makes the procedure easier and causes less collateral damage.

For instance, performing surgery on a hemodynamically unstable patient may further worsen their condition, resulting in adverse outcomes despite timely source control. In such scenarios, initial resuscitation to stabilize the condition may be required before proceeding with invasive source control measures, although resuscitation and source control can be simultaneously performed in many instances.

8.5 What are the best practices on abdominal drains, sampling and antibiotics after source control?

- Use of abdominal drains
 - » Avoid the use of drains in non-pancreatic abdominal surgery
 - » Limit the duration of abdominal drains in the treatment of abdominal sepsis
 - » Remove abdominal drains as soon as patient physiology allows
- 2. Sampling abdominal drains
 - » Sample intra-operatively not postoperatively for reliable microbiology results
 - » Do not sample fluid from a drain that has been in situ for 24 h or longer
 - » Avoid culturing drains/parts of drains upon removal
- Antimicrobial use
 - » Ignore skin flora cultured from abdominal drains
 - » When infection is suspected clinically, do not solely target pathogens obtained from drain cultures
- In adult patients with complicated intra-abdominal infections who have undergone definitive source control, we recommend a short (4 days) versus long (8 days) duration of antimicrobial treatment.

At a Glance

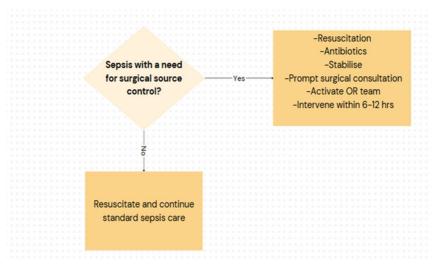


Fig 2: At a glance.

8.6 References

- De Waele JJ. Importance of timely and adequate source control in sepsis and septic shock. J Intensive Med. 2024 Feb 27;4(3):281-286. doi: 10.1016/j.jointm.2024.01.002. PMID: 39035625; PMCID: PMC11258501.
- De Waele, J.J., Girardis, M. & Martin-Loeches, I. Source control in the management of sepsis and septic shock. Intensive Care Med 48, 1799–1802 (2022). https://doi.org/10.1007/s00134-022-06852-5
- De Waele JJ, Boelens J, Van De Putte D, Huis In 't Veld D, Coenye T. The Role of Abdominal Drain Cultures in Managing Abdominal Infections. Antibiotics (Basel). 2022 May 20;11(5):697. doi: 10.3390/antibiotics11050697. PMID: 35625341; PMCID: PMC9137968.

- Elliott DC, Kufera JA, Myers RA. Necrotizing soft tissue infections. Risk factors for mortality and strategies for management. Ann Surg 1996;224(5):672–83. doi: 10.1097/00000658-199611000-00011.
- Wong CH, Khin LW, Heng KS, Tan KC, Low CO. The LRINEC (Laboratory Risk Indicator for Necrotizing Fasciitis) score: A tool for distinguishing necrotizing fasciitis from other soft tissue infections. Crit Care Med 2004;32(7):1535–41.
- Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014 Jul 15;59(2):147-59. doi: 10.1093/cid/ciu296. Epub 2014 Jun 18. PMID: 24947530.
- Hua C, Urbina T, Bosc R, Parks T, Sriskandan S, de Prost N, Chosidow O. Necrotising soft-tissue infections. Lancet Infect Dis. 2023 Mar;23(3):e81-e94. doi: 10.1016/S1473-3099(22)00583-7. Epub 2022 Oct 14. PMID: 36252579.
- 8. Terzian WTH, Nunn AM, Call EB, Bliss SE, Swinarska JT, Rigdon J, Avery MD, Hoth JJ, Miller PR 3rd. Duration of Antibiotic Therapy in Necrotizing Soft Tissue Infections: Shorter is Safe. Surg Infect (Larchmt). 2022 Jun;23(5):430-435. doi: 10.1089/sur.2022.011. Epub 2022 Apr 22. PMID: 35451883.

KNOW?

NSTI is a surgical emergency – delays increase mortality. When in doubt, cut, don't wait!

CHAPTER 9 REFRACTORY SEPTIC SHOCK

9.1 Definition

Refractory septic shock is defined variably as persistent hypotension, with end-organ dysfunction and requiring high-dose vasopressor greater than 0.5~mcg/kg/min norepinephrine or equivalent [1]. There is an associated mortality of up to 60%. [1-3]

Consider the following causes in refractory septic shock;

- Severe metabolic acidosis (pH 7.15)
- Organ failure
- Critical illness related corticosteroid insufficiency
- Side effects of high dose catecholamine
- Microcirculatory dysfunction
- Unable to control source [4].

9.2 Adjunctive in management of refractory septic shock

Consider the following adjunctive while managing patients with refractory septic shock;

Adjunctive	
Albumin	To consider using human albumin (5% or 20%) solution if ongoing fluid resuscitation is required. Albumin helps maintains plasma oncotic pressure and acts as an antioxidant and as a buffer for acidbase equilibrium. During the early phase of severe shock, target a serum albumin level of > 30 g/l [2].
	Reduce mortality in patients with septic shock
	Weak recommendation, low quality of evidence

Adjunctive				
Hydrocortisone	It is a glucocorticoid which helps to downregulates the proinflammatory response and limits the anti- inflammatory response while preserving innate immunity [2,4,5].			
	Indicated when there is ongoing requirement of norepinephrine or epinephrine ≥ 0.25 mcg/kg/min for at least 4 hours after initiation of vasopressors to maintain the target MAP.			
	Dose; IV hydrocortisone 50 mg QID or as an infusion 200mg/24 hour			
	Increase the number of vasopressor free days			
	Weak, moderate-quality evidence			
Thiamine	Absolute or relative thiamine deficiency is common in patients with septic shock. Such a deficiency may present as an unexplained lactic acidosis.			
	Intravenous thiamine replacement has been shown to reduce lactate levels and mortality in patients with proven thiamine deficiency. Furthermore, intravenous thiamine replacement is associated with a reduced need for renal replacement therapy and improved renal function in patients with septic shock [6,7].			
	Dose; IV Thiamine 200mg stat and IV 200 mg BD			
	Weak, low quality of evidence			

Adjunctive	
Ascorbic acid (Vitamin C)	Strong antioxidant and Cofactor for catecholamine and vasopressin synthesis. Septic patients have absolute or relative vitamin C deficiency [4,6,7]
	Dose; 25 mg/kg or 1.5 gm 6 hourly
	Thiamine in combination with Vit C and hydrocortisone was associated with a reduction in organ failures and early recovery
	Weak, low quality of evidence
Sedation and analgesia	Sedative medications exacerbate hypotension through myocardial depression and systemic vasodilation.
	Current guidelines suggest minimizing sedation in mechanically ventilated patients with sepsis.
	Suggest to combine sedatives agents (Opioid and non-opioid)
Bicarbonate therapy	Refractory septic shock is associated with severe acidosis which is further associated with vasopressor hypo responsiveness due to impaired catecholamine signaling. Suggest to give bicarbonate as bolus followed by infusion when PH < 7.2 or HCO3 < 15 Dose; Bolus 200mmol/I or 200 meq/I over 1 to 2 hours Maintenance dose 50mml/I or 50meq/I per hour over 4 to 6 hours Monitor with Arterial blood gas every 2 hourly for 6 hours then every 4 hourly further continuation or to stop [4,8]
	Weak, low quality of evidence

Adjunctive	
Calcium chloride/ calcium gluconate	Calcium is essential for cardiac and smooth muscle contractility. Calcium deficiency is common in refractory septic shock due to various reasons such as calcification of necrotic foci, chelation by blood products, renal dysfunction and parathyroid deficiency [4,9,10].
	Dose – can be given as bolus (2 Ampules) or as an infusion when ionized serum calcium level are very low
	However, no strong evidence that calcium correction improves outcome
Adjunctive antimicrobial therapy	In addition to beta lactams, we suggest adding another gram-negative coverage antibiotics such as aminoglycosides like amikacin (2 antibiotics from different groups) [5]
Respiratory support	For adults with refractory septic shock, we suggest the use of non- invasive ventilation (NIV) or positive pressure ventilation for the respiratory support.
	For the positive pressure ventilation use lung protective ventilatory strategy with tidal volume 6 to 8ml/kg of predicted body weight (PBW) and target P plateau pressure (Ppla) less than 30 cm H2O
Renal replacement therapy	In case of refractory shock and acute renal insufficiency, the expert suggests initiation of renal replacement therapy (RRT) if pH<= 7.15 in the absence of severe respiratory acidosis and despite appropriate treatment [4]
	No difference in mortality between early and late RRT.
	Continuous renal replacement therapy (CRRT) is preferred over the intermittent hemodialysis.

Adjunctive	
Blood purifications	There is insufficient evidence to make a recommendation on the use of other blood purification techniques. No recommendation
Hemodynamic monitoring	Invasive BP monitoring with arterial line via radial or femoral access
Others [4]	There is insufficient evidence to make a recommendation on the use of the followings; Intravenous Immunoglobulin Levosimendan Intravenous prostacyclin Methylene blue Angiotensin II VA ECMO

9.3 References

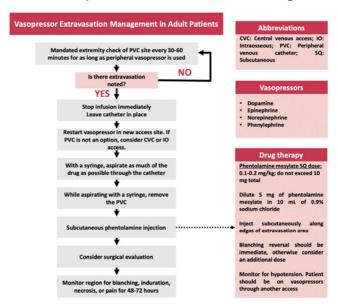
- 1. Bassi E, Park M, Azevedo LCP. Therapeutic Strategies for High-Dose Vasopressor-Dependent Shock. Critical Care Research and Practice. 2013; 2013:1–10.
- Nandhabalan P, Ioannou N, Meadows C, Wyncoll D. Refractory septic shock: our pragmatic approach. Critical Care [Internet]. 2018 Sep 19 [cited 2020 Jan 15];22(1). Available from https:// link.springer.com/content/pdf/10.1186%2Fs13054-018-2144-4. pdf
- 3. Gil Joon Suh, Tae Gun Shin, Woon Yong Kwon, Kim K, You Hwan Jo, Sung Hyuk Choi, et al. Hemodynamic management of septic shock: Beyond of the SSC guidelines. Clinical and experimental emergency medicine. 2023 Jul 13.
- 4. Jentzer JC, Vallabhajosyula S, Khanna AK, Chawla LS, Busse LW, Kashani KB. Management of Refractory Vasodilatory Shock. Chest. 2018 Aug;154(2):416–26.

- Singer M, Deutschman CS, Seymour CW. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
 JAMA [Internet]. 2016 Feb 23;315(8):801–10. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4968574/
- Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock. Chest. 2017 Jun;151(6):1229– 38.
- 7. Hwang SY, Ryoo SM, Park JE, Jo YH, Jang DH, Suh GJ, et al. Combination therapy of vitamin C and thiamine for septic shock: a multi-centre, double-blinded randomized, controlled study. Intensive Care Medicine. 2020 Aug 11;46(11):2015–25.
- 8. Ary Serpa Neto, Fujii T, Khaled El-Khawas, Udy A, Bellomo R. Sodium bicarbonate therapy for metabolic acidosis in critically ill patients: a survey of Australian and New Zealand intensive care clinicians. aCritical care and resuscitation: (Print). 2020 Sep 1;22(3):275–80.
- Han Sol Chang et.al. Short-term hemodynamic response to calcium supplementation in patients with refractory septic shock: a retrospective observational study. Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Jankowski, S, Vincent, J. L. Calcium administration for cardiovascular support in critically ill patients: when is it indicated? Journal of intensive care medicine, 1995; 10(2), 91– 100. https://doi.org/10.1177/088506669501000205

ANNEXURE

Annexure 1: Guide to infusion rate of noradrenaline as per body weight

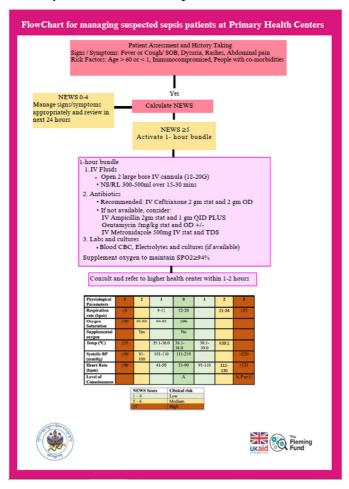
	Single strength Noradrenaline Noradrenaline 4mg (4ml) + NS or D5% (46ml) = 50 ml solution (1 ml = 80mcg)								
			Weight (k	g) and dose	in microgra	am/kg/minu	te		
Rate(ml/hr)	40	50	60	70	80	90	100	110	120
1	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01
2	0.07	0.05	0.04	0.04	0.03	0.03	0.03	0.02	0.02
3	0.10	0.08	0.07	0.06	0.05	0.04	0.04	0.04	0.03
4	0.13	0.11	0.09	0.08	0.07	0.06	0.05	0.05	0.04
5	0.17	0.13	0.11	0.10	0.08	0.07	0.07	0.06	0.06
6	0.20	0.16	0.13	0.11	0.10	0.09	0.08	0.07	0.07
7	0.23	0.19	0.16	0.13	0.12	0.10	0.09	0.08	0.08
8	0.27	0.21	0.18	0.15	0.13	0.12	0.11	0.10	0.09
9	0.30	0.24	0.20	0.17	0.15	0.13	0.12	0.11	0.10
10	0.33	0.27	0.22	0.19	0.17	0.15	0.13	0.12	0.11
11	0.37	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12
12	0.40	0.32	0.27	0.23	0.20	0.18	0.16	0.15	0.13
13	0.43	0.35	0.29	0.25	0.22	0.19	0.17	0.16	0.14
14	0.47	0.37	0.31	0.27	0.23	0.21	0.19	0.17	0.16
15	0.50	0.40	0.33	0.29	0.25	0.22	0.21	0.18	0.17
16	0.53	0.43	0.36	0.30	0.27	0.24	0.22	0.19	0.18
17	0.57	0.45	0.38	0.32	0.28	0.25	0.23	0.21	0.19
18	0.60	0.48	0.40	0.34	0.30	0.27	0.24	0.22	0.20
19	0.63	0.51	0.42	0.36	0.32	0.28	0.25	0.23	0.21
20	0.67	0.53	0.44	0.38	0.33	0.30	0.27	0.24	0.22

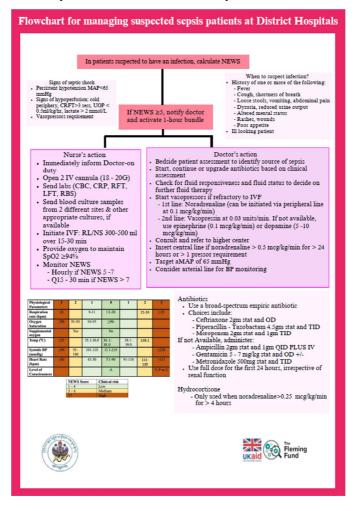

Double strength Noradrenaline

Noradrenaline Smg (8ml) + NS or D5% (42ml) = 50 ml solution (1 ml = 160mcg)

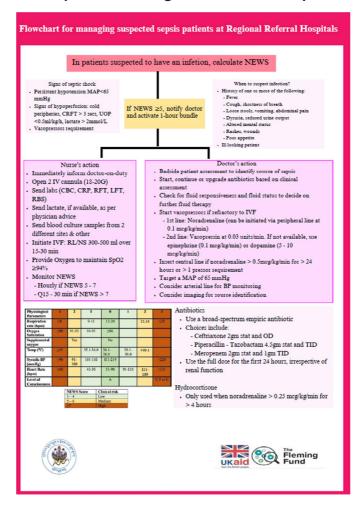
Weight (kg) and dose in microgram/kg/min.

	3 ()								
Rate(ml/hr)	40	50	60	70	80	90	100	110	120
1	0.07	0.05	0.04	0.04	0.03	0.03	0.03	0.02	0.02
2	0.13	0.11	0.09	0.08	0.07	0.06	0.05	0.05	0.04
3	0.20	0.16	0.13	0.11	0.10	0.09	0.08	0.07	0.07
4	0.27	0.21	0.18	0.15	0.13	0.12	0.11	0.10	0.09
5	0.33	0.27	0.22	0.19	0.17	0.15	0.13	0.12	0.11
6	0.40	0.32	0.27	0.23	0.20	0.18	0.16	0.15	0.13
7	0.47	0.37	0.31	0.27	0.23	0.21	0.19	0.17	0.16
8	0.53	0.43	0.36	0.30	0.27	0.24	0.21	0.19	0.18
9	0.60	0.48	0.40	0.34	0.30	0.27	0.24	0.22	0.20
10	0.67	0.53	0.44	0.38	0.33	0.30	0.27	0.24	0.22
11	0.73	0.59	0.49	0.42	0.37	0.33	0.29	0.27	0.24
12	0.80	0.64	0.53	0.46	0.40	0.36	0.32	0.29	0.27
13	0.87	0.69	0.58	0.50	0.43	0.39	0.35	0.32	0.29
14	0.93	0.75	0.62	0.53	0.47	0.41	0.37	0.34	0.31
15	1.00	0.80	0.67	0.57	0.50	0.44	0.40	0.36	0.33
16	1.07	0.85	0.71	0.61	0.53	0.47	0.43	0.39	0.36
17	1.13	0.91	0.76	0.65	0.57	0.50	0.45	0.41	0.38
18	1.20	0.96	0.80	0.69	0.60	0.53	0.48	0.44	0.40
19	1.27	1.01	0.84	0.72	0.63	0.56	0.51	0.46	0.42
20	1.33	1.07	0.89	0.76	0.67	0.59	0.53	0.48	0.44


Annexure 2: Vasopressor extravasation management


Annexure 3: Template for using SBAR for communication

S	What is going on with the patient? Example: I am calling about: (patient's name and location) I am calling because this patient has met the screening criteria for possible sepsis		
Background	What is the clinical background or context? Example: The patient is in the hospital because and has suspected/conformed infection		
Assessment	What do you think the problem is? Example: I am concerned that the patient possibly has Sepsis Current status Heart Rate: RR: T: D2 Sat: WBC: Last C&S done: NEWS score is		
Recommendation	What would I do to correct it? Example: I would like administer IV fluid and send blood for culture. Do you want me to do anything else? I need you to come within 30 minutes, assess the patient and complete the sepsis order		


Annexure 4: Flowchart for managing suspected sepsis patients at Primary Health Centers

Annexure 5: Flowchart for managing suspected sepsis patients at District Hospitals

Annexure 6: Flowchart for managing suspected sepsis patients at Regional Referral Hospitals

Annexure 7: Standard Operating Procedure (SOP) on blood culture sample collection

Standard Operating Procedure, Department of Pathology and Laboratory Medicine

Copy No.	

Proprietary Statement: This document contains proprietary information of Department of Pathology and Laboratory Medicine, Bacteriology unit, Microbiology, JDWNRH. It is intended solely for the information and use by the institution staff only. The proprietary information may not be used, edited, reproduced, shared or disclosed to any other parties for any purpose in any form without expressed written permission of the undersigned authority.

SOP No.	Title	Version No.	Total Pages
JDW/MICRO/BACT/	SOP on Blood culture Sample collection	01	9

Issue Date	Effective Date	Review Period
		3 yearly

Function	Name	Designation / Department	Signature
Prepared by	Kinley Wangchuk	Sr. Lab technologist/Hematology	
Verified by	Dr. Birendra Pradhan	HoD	
	Phurba Wangdi	Deputy Lab officer	
Approved by	Dr. Sonam Tshering	Chair, QMC	

Distributio	n:	All Departments and Division				
Location	ICID	QAD, IDWNRH				
Version No	ON SUMMARY Effective Date Reason for Change Details of the			Details of the change		

Table of Contents

- Scope
- Objective
- 3. Responsibilities
- Definitions
 Principle
- Pre-requisite
 Process Map in Flow Chart
- 8. Procedures
- 9. Annexure (Related Forms or Work Instructions)
- 10. References

1. Scope

This SOP applies to all healthcare professionals involved in the collection of blood cultures in a clinical setting, including but not limited to nurses, phlebotomists, and medical practitioners.

2. Objective

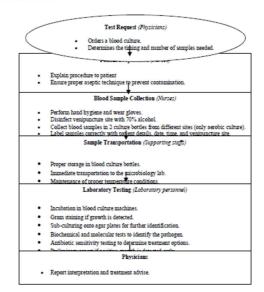
This Standard Operating Procedure (SOP) provides detailed instructions for the collection of blood samples for blood culture to facilitate the early detection of sepsis. The goal is to ensure accurate and reliable results, contributing to timely diagnosis and treatment.

3. Responsibilities

Sl. No.	Official Designation	Responsibilities
1.	Requesting physicians	Order the Blood Culture, determine timing and Site, interpret Results, initiate Treatment, and follow up on Patient Response.
2.	Nurses	Prepare the Patient, collect blood samples using proper techniques to avoid contamination, ensure proper labeling and handling, ensure timely transport to lab, monitor the patient, administer treatment, and educate the patient.
3.	Supporting Staffs	Ensure timely and proper sample transport to the laboratory for testing in order to prevents bacterial contamination which could affect results.
4.	Laboratory personnel	Process and analyze blood cultures following standard protocols.

JDW/MICRO/BACT01: SOP on blood culture sample collection

Page 2 of 5


4. Definitions

- Blood Culture: A test to detect the presence of microorganisms in blood.
- 5. Principle
 - To have a uniform standard for obtaining blood culture sample.

6. Pre-requisites

- 6.1. 1 set (2 blood culture bottles).
- 6.2. Sterile blood collection set (needle and syringes)
- 6.3. Antiseptic solution (70% alcohol)
- 6.4. Adhesive bandage
- 6.5. Personal protective equipment (PPE): sterile gloves and masks.
- 6.6. Sharps disposal container
- 6.7. Dry cotton

7. Process Map in Flow Chart

7. Procedure

7.1. Preparation

7.1.1 Verify Patient Identification

- Confirm the patient's identity using three identifiers (Name, Date of birth, and CID number).
- 7.1.1.2. Ensure the patient understands the procedure and obtains informed consent.

7.1.2. Prepare Equipment

7.1.2.1. Gather all necessary equipment and ensure that all items are sterile and within their expiration dates.

7.2. Prepare the Work Area

- 7.2.1 Clean the work area with an appropriate disinfectant.
- 7.3 Hand Hygiene and Personal Protective Equipment
 - 7.3.1 Perform hand hygiene thoroughly using soap and water or an alcohol-based hand sanitizer.
- 7.3.2 Don appropriate PPE, including sterile gloves and, a mask.

7.4 Blood Collection

7.4.1 Site Preparation

- 7.4.1.1 Select an appropriate vein on two sites. In the presence of a central line, ensure one sample is from the central line and the other from the peripheral vein.
- 7.4.1.2 Cleanse the venipuncture site with an antiseptic solution (70% alcohol wipes) using a circular motion starting from the center and moving outward. Allow the site to air dry completely to ensure the efficacy of the antiseptic.

7.4.2 Blood Collection

- 7.4.2.1 Prepare the blood culture bottles according to the manufacturer's instructions (one of the culture bottles is filled, followed by the next bottle from another venipuncture site).
- 7.4.2.2 Using a sterile needle and syringe or a vacuum collection system, insert the needle into the selected vein. If using a syringe, gently aspirate the blood into the syringe.
- 7.4.2.3 Disinfect the rubber septum on the blood culture bottles or evacuated tube(s) with 70% alcohol wipes.
- 7.4.2.4 Transfer the blood into the culture bottles. Fill the bottles according to the recommended volume (10 ml per bottle for adults: 1-5 ml for pediatric patients).
- 7.4.2.5 Avoid overfilling or under filling the bottles as this can affect culture results. Time of collection is not important but volume is critical.

7.4.3 Post-Collection Care

- 7.4.3.1 Once the blood is collected, remove the needle and apply pressure to the puncture site with sterile dry cotton to prevent bleeding.
- 7.4.3.2 Apply an adhesive bandage after the bleeding has stopped.

Standard Operating Procedure, Department of Pathology and Laboratory Medicine

7.4.3.3	Dispose of the needle a	and other sharp	ps immediately int	o a sharp disposa
	container			

7.4.4 Documentation

- 7.4.4.1 Record the following details in the patient's medical record
 - 7.4.4.1.1 Patient's name and identification number
 - 7.4.4.1.2 Date and time of collection
 - 7.4.4.1.3 Site of collection
 - 7.4.4.1.4 Name of the person who collected the sample
 - 7.4.4.1.5 Any special instructions or comments
- 7.4.4.2 Ensure that all documentation is accurate and legible.

7.4.5 Sample Transport

- 7.4.5.1 Transport the blood culture bottles to the laboratory promptly to avoid any potential degradation of the sample.
- 7.4.5.2 Ensure that the bottles are transported at room temperature
- 7.4.5.3 If the sample cannot be transported immediately to the laboratory, store the sample in a clean area at optimal room temperature. Do not refrigerate the

7.5 Quality Control and Safety

- 7.5.1 Follow infection control procedures to minimize the risk of cross-contamination.
- 7.5.2 Regularly check the expiration dates and sterility of all collection equipment.
- 7.5.3 Review and adhere to institutional policies regarding blood culture collection and handling.

7.6 Troubleshooting

- 7.6.1 Under filled/overfilled sample Volume: If the sample volume is insufficient or overfilled, send a new sample in a new bottle
- 7.6.2 Contamination:
 - 7.6.2.1 If contamination is suspected (e.g. if the same organism is isolated in multiple cultures from different patients), review the collection technique and address any procedural issue.

8 References

8.1 Centre of Diseases Control (CDC), Atlanta, Georgia. United States.

